
Polish Infrastructure

for Supporting Computational Science
in the European Research Space

Performance Monitoring
and Analysis System

for MUSCLE-based Applications

W. Funika, M. Janczykowski, K. Jopek,

M. Dudek, and M. Grzegorczyk

Institute of Computer Science AGH,
al. Mickiewicza 30, 30-059 Krakow, Poland

e-Science 2011 - Distributed Multiscale Computing 2011

Stockholm, Sweden, 5.12.2011

Outline

 Motivation

 Research goals

 Overview of proposed solution

 System architecture

 Implementation details

 Performance issues

 Case study

 Conclusions and future work

Motivation

The design and simulation of multi-scale systems are

crucial for different branches of science,

Easing user's interactions with the monitoring system,

turning them into a kind of user-friendly collaboration

with the system,

Ontologies make possible to change with little effort the

focus and granularity of performance analysis as well as

to support the reasoning on performance flaws,

Flexible semantic-based description allows to facilitate

adapting the monitoring tool to a monitored system

Research goals

Creation of a set of ontologies covering MUSCLE-bound

monitored resources

Visualisation of application behavior and resources’

usage at run-time

Making possible to investigate the dependencies

between various measurements at different levels of

abstraction

Research goals (cont’d)

Need of gathering data on the MUSCLE system, at the

lowest possible cost, at different granularity and with

different monitoring data suppliers:

 using Nagios to monitor resources usage,

 using SemMon to provide the user - who is carrying out the

experiment - with a complex view on experiment's progress,

The relevant stored data is used to analyze the status of

a running application:

 facilitating the work of the programmer

Overview of proposed solution

Monitoring tool for MUSCLE’s applications

Extending SemMon tool features by low-level monitoring

data coming from Nagios;

Further, coming to features of:

 MUSCLE,

 SemMon,

 Nagios

MUSCLE

 The Multi-Scale Coupling Library and Environment;

 a platform independent agent system to couple multi-scale

simulations/experiments;

 communication is based on the actor-based concurrency model;

--

 implementation uses Java Agent DEvelopment framework - JADE

 provides an ability to describe a multi-scale application (experiment)

as a set of connected single-scale modules

 provides a software framework to build experiments according to the

finite cellular automata theory

SemMon

 an agent-based, high-level monitoring tool which takes advantage of

semantic description of monitored resources exploited for distributed

computations;

 provides a model for the information to be collected and enables the

correlating of measurements coming from multiple distributed monitoring

data sources

--

 Integration of various low-level monitoring tools via specialized adapters;

 SemMon is a distributed tool – core, GUI module, and reasoners are

capable of working on different hosts owing to the communication

mechanisms involved, e.g. RMI and JMX

Nagios

 a mature, full-featured, low-level monitoring system;

 extensible tool

 the architecture of Nagios allows connecting to the SemMon tool via

BSD sockets;

 obtains low-level system data, e.g. on resources usage

Sequence diagram of monitoring actors’ interactions

Ontology of resource classes

of MUSCLE-based applications

 design solution involves specifying a semantic description of the application’s

elements and related ones

resources

hardware node

software

memory CPU
Network

interface
Hard disk

MUSCLE

experiment

Java

Virtual

Machine

Operating

system

Experiment

Kernel

cluster

System architecture

 SemMon is a top component of the architecture:

 obtains low-level monitoring data from Nagios;

 traces the communication between MUSCLE kernels;

 receives current kernel state (if kernel is computing, waiting for message or

preparing a new message);

 Experiment is being computed in MUSCLE’s kernels.

 Overall architecture of MUSCLE-based application monitoring:

System architecture in layered form

 Computational Server:

 Computational layer – MUSCLE computing its experiments,

 Monitoring layer – both MUSCLE’s and Nagios’ monitoring plugin,

 Monitoring server:

 SemMon server devided into layers,

 Client:

 Java GUI client app or webbrowser which communicates with monitoring server

Implementation details

 The protocol designed for monitoring purposes - mainly based on an XML set of

rules;

 Communication between Nagios and SemMon is implemented using BSD sockets;

 Communication between MUSCLE and SemMon is resolved by the Remote Method

Invocation mechanism;

 Strings are being sent with a standardized Java format: a stream of chars is preceded

by two bytes encoding the total length of string in the big-endian order;

 Java-to-Java communication uses a conventional method invocation with arguments

as strings.

Communication model for

MUSCLE-based application monitoring:

Visualization

 Data visualization component allows the user to define not only a

view related to a simple hardware metric, but also to create

specialized metrics covering more complex characteristics like the

execution of experiment;

 GUI enables choosing a needed metric and tune a relevant display

to visualize performance analysis results;

 Visualization chart of the kernel’s activity in the form of an extended

space-time display and its integration into the SemMon tool

Measurement and visualization management

Visualization

(resources usage and communication matrix display)

Performance issues

 Without checking the real size data, the whole execution time

(proper execution plus monitoring) grew from 6.3% to 8.1%;

 With small messages monitoring costs are similar – the overhead is

ca 8.3% and remains constant vs. the messages count;

 When the message size decreases, the monitoring decreases as

well; so a way to contribute to a lower overhead is seek for speeding

up the computation of data volume instead of serializing the objects

transferred;

 Another source for cutting monitoring costs is to handle monitoring

data at a lower level to avoid data transfer and to aggregate data;

 The user can decide whether they want to obtain the real size of

data transferred or the MUSCLE's message size

Case study

 An experiment performing heat flow in the object;

 Six kernels which are communicating with each other (communication matrix was

shown above);

 Every kernel is connected – and therefore communicating – to two other kernels, the

exception are boundary kernels which are connected to only one kernel;

 Heat flow in object. Results from multiple kernels

 Used only small messages (about 400B – in fact this is a table of 50 java double

primitives) and the overhead was ca 6%;

 :

Conclusions

 MUSCLE extension, providing information about inter-kernel

communication and kernel’s state;

 Specialized SemMon adapter, which gathers data from Nagios and

MUSCLE. The adapter provides collected data for SemMon core;

 Dedicated visualisations for communication between kernels;

 Measured serialization’s impact on experiment’s execution

Future work

 New types of visualization, like extended space-time digram;

 Adaptation to other applications, built with the message passing

paradigm;

 Use of some existing reasoning mechanisms searching for the

reasons of performance flaws, e.g. fuzzy logic.

Acknowledgements

The research is partly supported by Polish

Infrastructure for Supporting Computational

Science in the European Research Space PL-Grid.

Inspiration and support from Dr. Kasia Rycerz is

appreciated.

Thank You!

