

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Application of Heterogeneous Computing to CAFE Simulations of Production Processes

Rauch Łukasz, Bzowski Krzysztof, Rodzaj Artur

Department of Applied Computer Science and Modelling

Faculty of Metals Engineering and Industrial Computer Science

- 1. Motivation
- 2. Aim of the work
- 3. Tools
 - DMR Multiscale Computations
 - Heterogeneous architectures
- 4. Implementation details
 - Cellular Automata for Grain Growth
 - Finite Element Method for Heat Transfer
- 5. Results and discussion

Digital Material Representation

Fig. Initial 3D DMR with uniform mesh and deformed mesh

Fig. Example of grain growth

Fig. Illustration of the finite element mesh generated on the basis of the DMR.

DMR Multiscale Computations

- ✓ Software development
 - Algorithms
 - Parallelization
- ✓ Microstructure simplification
 - (SS)RVE
- ✓ Hardware usage
 - heterogeneous computing

Heterogeneous architectures - idea

- Physical constraints in the construction of standard processors
 - Reducing energy consumption
 - Maximizing performance

Using different processing cores

TALE OF THE TAPE: SUPERCOMPUTER VS. GAME CONSOLE

	SANDIA LAB'S ASCI RED	SONY PLAYSTATION 3
DATE OF ORIGIN	1997	2006
PEAK PERFORMANCE	1.8 teraflops	1.8 teraflops*
PHYSICAL SIZE	150 square meters	0.08 square meter
POWER CONSUMPTION	800 000 watts	<200 watts

* For GPU; CPU adds another 0.2 teraflops

Illustration: George Retseck

Fig. Brodtkorb A., Dyken C., State-of-the-art in heterogeneous computing, Scientific Programming, vol. 18

Main objectives

To propose efficient parallel multiscale CAFE approach, composed of CA (micro scale) and FEM (macro scale) methods, working on heterogeneous architectures

Implementation for heterogenous platform using OpenCL

OpenCL

To apply implemented CAFE approach to simulate selected real production process

The main idea of the cellular automata technique is to divide a specific part of the material into one-, two-, or three-dimensional lattices of finite cells.

Each cell is characterized by its state and transition rules are defined to determine the new state of the cell on the basis of previous states of neighbours and the cell itself

Numerical model

FEM

Heat equation

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial t}{\partial x} \right) - c_p \rho \frac{\partial t}{\partial \tau} = 0$$

CA

Probability of state change

$$p = \exp\left(\frac{-Q_b}{RT}\right) \cdot \frac{K}{K_{\max}}$$

CAFE implementation details

The quantitative results – diffrent devices

The quantitative results – diffrent number of iterations and LD

AGH

The quantitative results – scalability of CA calculations

Scheduling between CPU and GPGPU

CA model verification

$$T_{G1} = T_{G2} = T_{G3} = const$$

 $T_{G1} > T_{G2} > T_{G3}$

FEM model verification

 $k_{G1} \gg k_{G2} \gg k_{G3}$

$k_{G1} > k_{G2} > k_{G3}$

Fig. Temperature-controlled grain growth

G₃

 G_2

 G_1

Results comparison

 $T_{G1} = T_{G2} = T_{G3} = const$

 $T_{G1} > T_{G2} > T_{G3} \qquad \qquad CAFE$

Conclusions and further research

- Good qualitative results were obtained in comparison to physical simulations
- The character of material models implemented in micro scale strongly influences the efficiency of CA performance on GPGPU
- Deeper analysis of scheduling CA, FEM and CAFE
- Performance of computational tests on heterogeneous cluster environments

