
The Mapper project receives funding from the EC's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-261507.

Comparison of Cloud and Local HPC approach for
MUSCLE-based Multiscale Simulations

Katarzyna Rycerz(1,2), Marcin Nowak(1), Paweł Pierzchała(1), Eryk Ciepiela(2),
Daniel Harężlak(2) and Marian Bubak (1,2,3)

(1) AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
(2) ACC CYFRONET AGH, Krakow, Poland
(3) Informatics Institute, University of Amsterdam, The Netherlands

http://dice.cyfronet.pl
DMC Workshop

5 Dec 2011

2

Plan

• Multiscale Application Requirements

• Motivation and Goals

• Background tools

– Multiscale Couping Library and Environment (MUSCLE)

– GridSpace Virtual labolatory

• Environment supporting execution of MUSCLE
based application on HPC and Cloud resources
using GridSpace

• Performance results and comparison

3

Multiscale Applications
Requirements

Mapper Project

• Focus on multiscale applications that can be described as a set of
independent modules of two types:

– simulating certain phenomena in certain time or space scale (scaleful)

• usually computationally intensive and require HPC resources,

– converting data from one scaleful module to another

• usually do not have demanding computational requirements

• to avoid additional communication, they often required to be
executed ”close” to the scaleful modules they are connecting

• focus on peer to peer type of computation

– application modules are executed concurrently

– exchange data in usually asynchronous fashion

• Examples from VPH, hydrology, fusion fields of science

4

Goals

• Fulfill multiscale application requirements by
integrating solutions from

– multiscale computing environments (MUSCLE)

– virtual experiment frameworks (GridSpace)

– Infrastructures (local HPC and Cloud)

• Compare Local HPC and Cloud approaches:

– performance of setting up and running multiscale
application

– ease of usage

Mapper Project

5

Background

Ongoing research in supporting composition of multiscale simulations from single scale
models on various levels

• Description languages

• Multiscale Modelling Language (MML)

• Dedicated multiscale environments

• Multiscale Coupling Library and Environment (MUSCLE)

• Model Coupling Toolkit (MCT)

• Astrophysical Multi-Scale Environment (AMUSE)

• Efforts of exploiting European Grid e-Infrastructures and clouds:

• Euforia http://www.euforia-project.eu/

• MAPPER http://www.mapper-project.eu/

• UrbanFlood http://urbanflood.eu/

• VPH-Share http://vph-share.org/

5

6

MUSCLE

• Connects tightly coupled simulation modules
(called kernels)

• kernels are executed concurrently

• actor-based concurrency model:
asynchronous sending, synchronous receiving

• kernels communicate directly using
unidirectional pipes (conduits) connecting their
entrances with exits.

• connections defined by external
configuration mechanism in a ruby script
called CxA file

• controlled by a so-called plumber

• each conduit can have a custom filter for
additional transformation/conversion of data

7

• Easy access using Web browser
• Experiment workbench

• Constructing experiment plans from
code snippets (Ruby, Python, MatLab,
Gnuplot etc.)

• Interactively run experiments
• Experiment Execution Environment

• Multiple interpreters
• Access to libraries, programs and

services
• Access to cluster, grid and cloud
• Experience

• Virolab project
• PL-Grid NGI
• MAPPER project

GridSpace

8

Proposed Environment Architecture

• User logs to chosen access machine
(Experiment Host) using GridSpace
Experiment Workbench

• Actual connection is done using SSH

• User creates or loads CxA connection
scheme as experiment snippet

• CxA scheme is parsed and sent to Kernel
Graph Editor that displays connections.

• Kernel Graph Editor aids the user in
joining kernels in groups that should be
executed at the same host.

• Depending on user preference the
MUSCLE application is performed on
HPC Cluster or AWS Amazon Cloud.

9

Automatic MUSCLE application
distribution

• plain legacy MUSCLE software requires manual start of
kernels and plumber on each computing node

• to support automatic control we applied a general
Master - Slave architecture

– Master distributes computational tasks, supports synchronization and
standard output/error gathering.

– Slaves start actual kernels and plumber and redirect its standard output
and error streams.

• once started by Slaves, actual kernels communicate with
each other using MUSCLE.

• solution used for both types of infrastructures (local HPC
and Cloud)

10

Setting up MUSCLE application
local HPC

• Portable Batch System
(PBS) local management
system for allocating
resources (pbsdsh tool)

• Distributed Ruby (DRb)
for communication
between master and
slaves.

• http://www.youtube.com/
watch?v=3S9-kljyXIw

Task Task Task

11

• standard cloud mechanisms for
launching virtual instances

– Amazon EC2 Ruby API

– one instance for one group of kernels

– preconfigured Amazon Machine Image
(AMI) with preconfigured MUSCLE
instalation

• Light kernel implementations (jars)
can be fetched from S3

• Heavy kernel implementations should
be installed on AMI beforehand

• Amazon SQS for communication
between master and slaves

• Amazon S3 for storing results

Setting up muscle application
Amazon AWS cloud

12

Local HPC and Cloud approach -
comparision

Local HPC Cloud

requires hardware investment pay for what you use

often requires contact with

administrator for additional installation

of packages

a user has administrative access

to a virtual instance

variable PBS waiting time depending

on number of other users’ jobs

constant and predictable virtual

instances booting time

using DRb requires setting up point to

point socket connections, hosts and

ports have to be explicitly known,

firewall issues

using SQS more convenient: high

level API to shared message queue,

communicating entities are not visible

to each other, well known port

Shared file system – no extra staging

data needed

Staging input/output data is needed

13

Kernel Graph Editor

• used to group kernels that should be
executed on the same node

• renders connection scheme in a user
web browser and sends the final
grouping back to GridSpace

• communication with GridSpace is
done by WebGUI tool (GS gem)

• information about kernel groups in
JavaScript Object Notation (JSON)
format sent with HTTP/POST.

• Kernel Graph Editor server is
implemented in Ruby (Sinatra
framework)

• Client is written in JavaScript (library
InfoVis)

14

Use Case – in-stent restenosis
application

• simulates treating of recurrent stenosis of
artery after surgical correction.

• 2D version

• implemented with MUSCLE

• kernels containing scale

– blood flow (BF)

– simulation of muscle cells (SMC)

– drug diffusion (DD)

• scaleless kernels (mappers)

• kernel calculating Initial Conditions (IC)

15

Performance Results

• As full application is running 3 days – we present tests for a partial
execution (for 15 and 150 number of iterations)

• Local HPC : the HP Cluster Platform 3000 BL 2x220 (CPUs Intel Xeon 2260
MHz connected with Infiniband) hosted at ACC Cyfronet, Krakow (no 88
on the Nov 2011 Top 500 list)

• Two types of instances in Amazon cloud (1 EC2 Compute Unit = CPU
capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor)

– High-CPU Extra Large (m1.xlarge) Instances with 7 GB of memory, 20
EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each),
1690 GB of local instance storage, 64-bit platform

– Cluster Compute Quadruple Extra Large (m2.4xlarge) Instances 23 GB
memory, 33.5 EC2 Compute Units, 1690 GB of local instance storage,
64-bit platform, 10 Gigabit Ethernet

16

Performance Results

• Local HPC

– setting up: waiting in a PBS queue and dispatching tasks using DRb

• Cloud

– setting up: creation of SQS queues, sending input sandbox to S3, booting
instances, dispatching tasks by SQS queue and fetching input sandbox by
tasks.

– sending output time (to S3) measured additionally

– amount of output :1MB (for 15 iterations) and 3MB (for 150 iterations)

• Both:

• the execution: actual application execution (including MUSCLE environment
start-up)

– Kernel communication with MUSCLE – 10 MB per iteration

17

Performance Results

• Cloud resources is more predictable comparing to batch queue system

• Execution time is comparable on both infrastructures, especially when
using Quadruple Extra Large instances dedicated for HPC applications

• Cloud solutions require additional time for data staging

18

Summary

• Comparison of the two approaches for using computing
infrastructure for MUSCLE-based multiscale applications:

– local HPC cluster

– Amazon AWS Cloud

• Both types of infrastructures were integrated with GridSpace

• Kernel Graph Editor for kernels grouping

• The preliminary results have shown that setting up multiscale
application in a Cloud environment is comparable to its
submission on a classical PBS-based HPC cluster

19

Thank you !

• Special thanks to Alfons Hoekstra, Joris Borgdorff and
Eric Lorenz from UvA for discussions on ISR2D, CxA
and MUSCLE

• Thanks to Maciej Malawski and Jan Meizner (Cyfronet)
for discussions about cloud computing.

• partially supported by the MAPPER project – grant
agreement no 261507, 7FP UE

• Access to the Amazon EC2 cloud was supported by an
AWS in Education grant

• See more on http://dice.cyfronet.pl

