

High Performance and High Productivity Computing

Parallel Scale-Transfer in Multiscale MD-FE **Coupling using Remote Memory Access**

D. Krause (dorian.krause@usi.ch), R. Krause (rolf.krause@usi.ch) Institute of Computational Science, Università della Svizzera Italiana Lugano, Switzerland

1st Workshop on Distributed Multiscale Computing December 5, 2011, Stockholm, Sweden

Multiscale Coupling

Concurrent Coupling

- Tackle cascade of scales with different models (Adaptivity)
- Fine- and coarse model concurrently running in one simulation

Example: Fracture Mechanics

- Complicated physics near crack tip (hard to coarse grain)
- Spurious finite size effects X
- Molecular Dynamics good for near-crack region
- Elasticity good (enough) for rest

Weak Bridging Domain Method

Ingredients

- Overlapping domain decomposition
- Equations of motion derived from weighted Hamiltonian

$$\mathcal{H} = \alpha h + (1 - \alpha)H + \lambda \cdot \mathbf{G}$$

- Constraints G = U − Pu
- P projection operator (Least squares or L² projection)
- RATTLE time integration requires solution of two linear systems in each time step
- Damping of high fluctuation field using Perfectly Matched Layer method

Weak Bridging Domain Method

1 Compute trial values u*, v*, U*, V* by applying the usual "Verlet kick" and "Verlet drift" ignoring the Lagrange forces:

$$\begin{bmatrix} \mathbf{v}^* \\ \mathbf{v}^* \end{bmatrix} = \begin{bmatrix} \mathbf{v}^n \\ \mathbf{v}^n \end{bmatrix} + \frac{\tau}{2} \begin{bmatrix} \mathbf{m}^{-1} \mathbf{f}^{n+1} \\ \mathbf{M}^{-1} \mathbf{F}^{n+1} \end{bmatrix} ,$$

$$\begin{bmatrix} \mathbf{u}^* \\ \mathbf{U}^* \end{bmatrix} = \begin{bmatrix} \mathbf{u}^n \\ \mathbf{U}^n \end{bmatrix} + \tau \begin{bmatrix} \mathbf{v}^* \\ \mathbf{v}^* \end{bmatrix}$$

where \mathbf{f}^n , \mathbf{F}^n denote the forces computed in step 4 of the previous time step.

- 2 Compute $G^* = Ru^* \tilde{M}U^*$ and solve $G^* = \Lambda \lambda$ for λ .
- 3 Computed corrected values

$$\begin{bmatrix} \mathbf{v}^{n+\frac{1}{2}} \\ \mathbf{V}^{n+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} + \frac{1}{\tau} \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\lambda} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\lambda} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}^{n+1} \\ \mathbf{U}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}^* \\ \mathbf{U}^* \end{bmatrix} + \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\lambda} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\lambda} \end{bmatrix} \,.$$

4 Evaluate forces fⁿ⁺¹, Fⁿ⁺¹ according to the Hamiltonian equation (without constraints). The MD force fⁿ⁺¹ also contains a (linear) damping term and can be written as

$$\mathbf{f}^{n+1} = \mathbf{f}^{\mathsf{int},n+1} + 2\mathbf{m} \mathbf{D} \mathbf{Q} \mathbf{v}^{n+\frac{1}{2}} .$$

5 Compute trial velocity values

$$\begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} = \begin{bmatrix} \mathbf{v}^{n+\frac{1}{2}} \\ \mathbf{V}^{n+\frac{1}{2}} \end{bmatrix} + \frac{\tau}{2} \begin{bmatrix} \mathbf{m}^{-1} \mathbf{f}^{n+1} \\ \mathbf{M}^{-1} \mathbf{F}^{n+1} \end{bmatrix}.$$

- 6 Compute $\dot{\mathbf{G}}^* = \mathbf{Rv}^* \tilde{\mathbf{M}}\mathbf{V}^*$ and solve $\dot{\mathbf{G}}^* = \Lambda \mu$ for μ .
- 7 Correct the velocities

$$\begin{bmatrix} \mathbf{v}^{n+1} \\ \mathbf{V}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} + \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\mu} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\mu} \end{bmatrix} \,.$$

Weak Bridging Domain Method

1 Compute trial values u*, v*, U*, V* by applying the usual "Verlet kick" and "Verlet drift" ignoring the Lagrange forces:

$$\begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} = \begin{bmatrix} \mathbf{v}^n \\ \mathbf{V}^n \end{bmatrix} + \frac{\tau}{2} \begin{bmatrix} \mathbf{m}^{-1} \mathbf{f}^{n+1} \\ \mathbf{M}^{-1} \mathbf{F}^{n+1} \end{bmatrix} \,,$$

$$\begin{bmatrix} \mathbf{u}^* \\ \mathbf{U}^* \end{bmatrix} = \begin{bmatrix} \mathbf{u}^n \\ \mathbf{U}^n \end{bmatrix} + \tau \begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix}$$

4 Evaluate forces fⁿ⁺¹, Fⁿ⁺¹ according to the Hamiltonian equation (without constraints). The MD force fⁿ⁺¹ also contains a (linear) damping term and can be written as

$$\mathbf{f}^{n+1} = \mathbf{f}^{\mathsf{int},n+1} + 2\mathsf{mDQv}^{n+\frac{1}{2}}.$$

5 Compute trial velocity values

- 2 Compute $\mathbf{G}^* = \mathbf{R}\mathbf{u}^* \tilde{\mathbf{M}}\mathbf{U}^*$ and solve $\mathbf{G}^* = \Lambda \lambda$ for λ .
- 3 Computed corrected values

$$\begin{bmatrix} \mathbf{v}^{n+\frac{1}{2}} \\ \mathbf{V}^{n+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} + \frac{1}{\tau} \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\lambda} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\lambda} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}^{n+1} \\ \mathbf{U}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}^* \\ \mathbf{U}^* \end{bmatrix} + \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\lambda} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\lambda} \end{bmatrix} \,.$$

- 6 Compute $\dot{\mathbf{G}}^* = \mathbf{Rv}^* \tilde{\mathbf{M}}\mathbf{V}^*$ and solve $\dot{\mathbf{G}}^* = \Lambda \mu$ for μ .
- 7 Correct the velocities

$$\begin{bmatrix} \mathbf{v}^{n+1} \\ \mathbf{V}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{v}^* \\ \mathbf{V}^* \end{bmatrix} + \begin{bmatrix} \mathbf{m}^{-1} \mathbf{R}^\mathsf{T} \boldsymbol{\mu} \\ -\mathbf{M}^{-1} \tilde{\mathbf{M}}^\mathsf{T} \boldsymbol{\mu} \end{bmatrix} \,.$$

Software

MACI (Multiscale Atomistic Coupling Interface)

- Tool for the coupling of commodity MD and FE codes
- Standardized interfaces for components
- MPMD-style execution (but single executable file)
- Data distribution dictated by components X

Anatomy of Parallel Scale-Transfer

Scale-Transfer

Given particle fields $(\mathbf{u}_i)_i$, $(\mathbf{v}_i)_i$ compute

•
$$\mathbf{Z}_A = \sum_i \mathbf{R}_{Ai} \mathbf{u}_i$$

•
$$\mathbf{z}_i = \sum_{A} \mathbf{R}_{iA} \Big[\Lambda^{-1} \big(\tilde{\mathbf{M}} \mathbf{U} - \mathbf{R} \mathbf{u} \big) \Big]_{A}$$

•
$$\mathbf{z}_i = \sum_j \mathbf{Q}_{ij} \mathbf{v}_j$$

$$MD \rightarrow MD \rightarrow MD$$

- Matrices distributed by rows
- MPMD execution prohibits data sharing X

Challenges

- Dynamic data distribution (unknown a-priori)
- Non-local nature of constraints X

Anatomy of Parallel Scale-Transfer

General Setup:

- Black-box operation $Op_w : \mathbf{u} \to \mathbf{z}$ executed on set of workers $w \in G$
- I_w = tuple of indices such that the input to Op_w equals $\operatorname{\mathbf{u}}(I_w) = (\operatorname{\mathbf{u}}_i)_{i \in I_w}$
- O_w = tuple of indices such that the contribution of w to z equals $z(O_w)$ (multiple contributions being summed up)

Anatomy of Parallel Scale-Transfer

Existing Approaches

- 1-dimensional decomposition X
- Event-based notification [Anciaux et al. '06]
 - # Particle migration triggers notification of workers
 - # Worker assigns new index to particles
 - # Consistent ordering of send buffers and data layout on workers 🗸
 - # Changing data layouts on workers X

Our Approach

- ullet Data distribution transparent to worker (good for modularity) $oldsymbol{arepsilon}$
- Assume MD processes know target workers and offsets for local particles
 - \sharp input targets = $\{w \in G \mid i \in I_w\}$
 - \sharp local input index k such that $(I_w)_k = i$
 - # Piggyback as metadata onto particles 🗸
- Embrace/Deal with one-sided nature of problem

Implementation Options

Algorithms

- 2-sided: Exchange of metadata precedes exchange of data
 - # Requires exchange of offsets X

 - MPI Alltoall: 1. Use collectives to exchange #values to be send/recv'ed
 2. Allocate buffer space and use MPI_Alltoallv or point-to-point communication for exchanging particles and offsets
 - MPI Pt2Pt: 1. Exchange offest using point-to-point communication with receives probing (MPI_Probe) in loop
 - 2. Exchange data with non-blocking send/recv calls

Implementation Options

Algorithms

- 2-sided: Exchange of metadata precedes exchange of data
 - # Requires exchange of offsets X
 - # Packing/unpacking of data on sender and receiver (performance insensitive to data sorting)

 ✓
- 1-sided: No explicit metadata exchange

Remote Memory Access

- Send and receive initiated by origin
- Target only implicitly involved (synchronization)
- Well suited for state-of-the-art interconnects with RDMA support
- Programming models: MPI-2 RMA, Global Arrays, (Open)SHMEM, ...

Implementation Options

Algorithms

- 2-sided: Exchange of metadata precedes exchange of data
 - # Requires exchange of offsets X
- 1-sided: No explicit metadata exchange
 - ♯ No exchange of offsets
 - # Performance sensitive to data sorting X
 - # Common structure: Origin processes put into or get data from RMA exposed memory + Collective synchronization
 - MPI RMA: Origin processes put or get data using MPI_Put and MPI_Get Collective MPI_Fence synchronization
 - # GA: Similar to MPI RMA but with transparent distribution of the global array
 - \$\preceq\$ SHMEM: Similar to MPI RMA but using shemm_put, shmem_get and
 shmem barrier all

Experimental Results

Università della d

Binning Benchmark

Binning

- Communication benchmark (weak scaling)
- Match particles to cells

Parameters

- N processes, W workers
- Number of particles per cell K
 - # Controls number of put's/get's and message sizes
- Number of cells per worker per dimension L
 - # Used to fix total number of particles

Configurations

C1	L = 64	K = 32	X
C2	L = 32	K = 256	
C3	<i>L</i> = 16	K = 2048	~

ullet Number of particles per worker \sim 8M

Test Systems

IB Cluster	Cray XT5	Cray XE6	
Dual-socket quad-core AMD Opteron "Barcelona" nodes	Dual-socket hexa-core AMD Opteron "Istanbul" nodes	Dual-socket 12-core AMD Opteron "Istanbul" nodes	
4x DDR Infiniband interconnect (RDMA support ✓)	Seastar2+ interconnect (optimized for MPI-1 subset X)	Gemini interconnect (RDMA support ✔)	
Open MPI 1.4.2, Global Array 5.0.1	Cray MPT, Global Array 4.3.2	Cray MPT, Global Array 4.3.2	
Every 8 th process as worker (one per node)	Every 12 th process as worker (one per node)	Every 12 th process as worker (two per node)	

Selected Results (IB Cluster)

Selected Results (Cray XT5)

Selected Results (Cray XE6)

Parallel Scale-Transfer using RMA

Conclusions

Multiscale MD-FE Coupling for Fracture Mechanics

- Molecular Dynamics for near crack tip region, continuum theory for remainder
- Model adaptive
- Coupling with averaging constraints

Novel Parallelization Approach for Parallel Scale-Transfer

- Piggyback'ed metadata
- Algorithms respect data ordering on FE processes
- Data distribution transparent to workers ✔
- Good match for RDMA capable interconnects
- Performance depends on data order X

Software

- C/C++/Python tool for Linux clusters
- Tested components: UG FE code, Tremolo and LAMMPS MD codes

Strong Scaling MACI

