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Introduction

Multiscale Coupling

Concurrent Coupling

® Tackle cascade of scales with
different models (Adaptivity) v/

® Fine- and coarse model concurrently
running in one simulation

Example: Fracture Mechanics

® Complicated physics near crack tip
(hard to coarse grain)

® Spurious finite size effects X

® Molecular Dynamics good for
near-crack region

e Elasticity good (enough) for rest ¢/
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Introduction

Weak Bridging Domain Method

Ingredients

Overlapping domain decomposition
Equations of motion derived from
weighted Hamiltonian

H=ah+(1—a)H+X-G

Constraints G = U — Pu
P projection operator (Least squares
or L? projection)

RATTLE time integration requires
solution of two linear systems in each
time step X

Damping of high fluctuation field using Perfectly Matched Layer method
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Introduction

Weak Bridging Domain Method

1 Compute trial values u*, v*, U*, V* by
applying the usual “Verlet kick” and
“Verlet drift” ignoring the Lagrange
forces:

v v T mflfn+1
- B s ]

o] = L] v

where f”, F" denote the forces computed
in step 4 of the previous time step.

2 Compute G* = Ru* — MU* and solve
G* = AX for A.

3 Computed corrected values

v* 1| mIRTA
= V* + - —1xa T
T |-M~IM X

untl u* m—IRT )
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Evaluate forces f"+1, Fntl according to
the Hamiltonian equation (without
constraints). The MD force "™+ also
contains a (linear) damping term and
can be written as

fn+1 — fint,n+1 + 2mDQv"7% .

Compute trial velocity values
v* T m—lfn+1
|:v*:| = + 5 |:M—1Fn+1i| .

Cgmpute G" = Rv* — MV* and solve
G = Ap for p.
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Correct the velocities

vl v* milRT/J,
Vn+1 - V* + M71 |\7|T .
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Introduction

Weak Bridging Domain Method

1 Compute trial values u*, v*, U*, V* by 4 Evaluate forces f"™1, F™1 according to
applying the usual “Verlet kick” and the Hamiltonian equation (without
“Verlet drift” ignoring the Lagrange constraints). The MD force "1 also
forces: contains a (linear) damping term and

can be written as
v* V" T [m—1fn+!
[V*} = {Vn} + 2 [M—anH} ) gl — gint,ntl 4 opQuit s
[31} _ {B:} +r [\‘;1} 5 Compute trial velocity values

10

o - § —1gntl
where How to efficiently parallelize the scale-transfer? Llf" .
in step For tme previous e StEp: T~ J l." ZJ Z T Frt

2 Compute G* = Ru* — MU* and solve . B
G* = AX for . 6 Compute G = Rv* — MV* and solve

3 Computed corrected values G = Ay for p.

— V* 1
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untl u* m—IRT )
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Parallel Scale-Transfer

Software

MACI (Multiscale Atomistic Coupling Interface)
® Tool for the coupling of commodity MD and FE codes v/
® Standardized interfaces for components
® MPMD-style execution (but single executable file)
® Data distribution dictated by components X

FE Solver = Cgalfﬁ(lar = MD Solver
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Parallel Scale-Transfer

Anatomy of Parallel Scale-Transfer

Scale-Transfer

Given particle fields (u;);, (v;); compute

o ZA:E;RAIUI MD = FE

* 2 =Y ,Ru[A (MU —Ru)| MD = FE = MD
® z; :Zjofjvj MD = MD = MD
® Matrices distributed by rows

MPMD execution prohibits data sharing X

Challenges
® Dynamic data distribution (unknown a-priori) X

® Non-local nature of constraints X
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Parallel Scale-Transfer

Anatomy of Parallel Scale-Transfer

General Setup:
® Black-box operation Op,, : u — z executed on set of workers w € G

® |, = tuple of indices such that the input to Op,, equals u(l,) = (u,-),.e,w
® O, = tuple of indices such that the contribution of w to z equals z(Oy)

(multiple contributions being summed up)
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Parallel Scale-Transfer

Anatomy of Parallel Scale-Transfer

Existing Approaches
® 1-dimensional decomposition X
® Event-based notification [Anciaux et al. '06]

# Particle migration triggers notification of workers

# Worker assigns new index to particles

i Consistent ordering of send buffers and data layout on workers ¢/
# Changing data layouts on workers X

Our Approach
e Data distribution transparent to worker (good for modularity) ¢/
® Assume MD processes know target workers and offsets for local particles

# input targets = {w € G |i € I,}
# local input index k such that (L), =i
f§ Piggyback as metadata onto particles v/

® Embrace/Deal with one-sided nature of problem
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Parallel Scale-Transfer

Implementation Options

Algorithms
e 2-sided: Exchange of metadata precedes exchange of data

# Requires exchange of offsets X

§ Packing/unpacking of data on sender and receiver (performance insensitive
to data sorting) ¢/

§ MPI Alltoall: 1. Use collectives to exchange #values to be send/recv’ed
2. Allocate buffer space and use MPI_Alltoallv or point-to-point
communication for exchanging particles and offsets

§ MPI Pt2Pt : 1. Exchange offest using point-to-point communication with
receives probing (MPI_Probe) in loop
2. Exchange data with non-blocking send/recv calls
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Parallel Scale-Transfer

Implementation Options

Algorithms

e 2-sided: Exchange of metadata precedes exchange of data

# Requires exchange of offsets X
§ Packing/unpacking of data on sender and receiver (performance insensitive
to data sorting) ¢/

e 1-sided: No explicit metadata exchange

Remote Memory Access
® Send and receive initiated by origin @

e Target only implicitly involved (synchronization)

® Well suited for state-of-the-art interconnects with RDMA
support

® Programming models: MPI-2 RMA, Global Arrays, @
(Open)SHMEM, ...
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Parallel Scale-Transfer

Implementation Options

Algorithms
e 2-sided: Exchange of metadata precedes exchange of data

# Requires exchange of offsets X
§ Packing/unpacking of data on sender and receiver (performance insensitive
to data sorting) ¢/

® 1-sided: No explicit metadata exchange

# No exchange of offsets v/

i Performance sensitive to data sorting X

§ Common structure: Origin processes put into or get data from RMA
exposed memory + Collective synchronization

§ MPI RMA: Origin processes put or get data using MPI_Put and MPI Get
Collective MPI _Fence synchronization

# GA: Similar to MPlI RMA but with transparent distribution of the global
array

§ SHMEM: Similar to MPI RMA but using shemm_put, shmem_get and
shmem_barrier_all
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Experimental Results

— 1 2008 2 8o
Binning Benchmark w338 %
P 0% %928
Binning 5505 00
® Communication benchmark (weak scaling) 2808 o o9

8
. %g:oo §°
® Match particles to cells 089 989
&f ‘Jooocooﬂ

Parameters

® N processes, W workers

® Number of particles per cell K

f§ Controls number of put's/get’s and message sizes

® Number of cells per worker per dimension L

# Used to fix total number of particles

Configurations

Cl|L=64| K=32 X
C2 | L=32| K=256
C3 | L=16 | K=12048 | v

® Number of particles per worker ~ 8M
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Experimental Results

Test Systems

IB Cluster

Dual-socket quad-core
AMD Opteron “Barcelona”
nodes

4x DDR Infiniband
interconnect
(RDMA support v')

Open MPI 1.4.2, Global
Array 5.0.1

Every 8" process as worker
(one per node)

Cray XT5

Dual-socket hexa-core
AMD Opteron “Istanbul”
nodes

Seastar2+ interconnect
(optimized  for  MPI-1
subset X)

Cray MPT, Global Array
4.3.2

Every 12" process as
worker (one per node)

Cray XE6

Dual-socket 12-core
AMD Opteron “Istanbul”
nodes

Gemini interconnect
(RDMA support )
Cray MPT, Global Array

432

Every 12 process as
worker (two per node)
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Experimental Results

Selected Results (IB Cluster)
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Experimental Results

Selected Results (Cray XT5)
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Experimental Results

Selected Results (Cray XE6)

MPI Alltoall MPI RMA
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Parallel Scale-Transfer using RMA
Conclusions

Multiscale MD-FE Coupling for Fracture Mechanics
® Molecular Dynamics for near crack tip region, continuum theory for remainder
® Model adaptive v/
® Coupling with averaging constraints

Novel Parallelization Approach for Parallel Scale-Transfer
® Piggyback'ed metadata
® Algorithms respect data ordering on FE processes v/
® Data distribution transparent to workers ¢/
® Good match for RDMA capable interconnects v/

® Performance depends on data order X

Software
® C/C++/Python tool for Linux clusters

® Tested components: UG FE code, Tremolo and LAMMPS
MD codes
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Backup
Strong Scaling MACI
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